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Now, using (7.4), we can write 

(7.6) 

Differentiating (7.2) with respect to 2 from the viewpoint of an observer with basis 
err (assumed to be inertial), we find 

aabs =at,I~+=+)~~~ + arei f;a=const + ~~~~~~~~~~~8~ (7.7) 

Formula (7.7) is a generalization of the classical Coriolis formula, which is established 
to Newtonian mechanics and derived in Cartesian coordinate systems with orthonormal bases .e, 
and 3,. 

Formula (7.7) holds in both special and general relativity theory, in any curvilinear 
coordinates. 

If one uses the equality 

where ew are the components of the rate of strain and wag those of the rotation tensor in 
translational motion in the volume C, the generalized Coriolis formula (7.7) may be written 
as 

aahs =at, + are1 + 2&1(e, i w&e@ (7.8) 

where each term is represented in a tangible form. 
Formula (7.8) retains its form when the accelerations are considered relative to a non- 

inertial observer with basis 8,. 
Though based on the most elementary concepts of tensor analysis, the foregoing arguments 

provide a more general result in a more general situation, with practically no computations, 
at the same time demonstrating the reason for the appearance and nature of the "added" 
acceleration in formula (7.8). 

The motion of a moving point M is split up into absolute and relative motions owing to 
the introduction of reference frames of translational motion; such frames may be introduced 
holonomically, together with global time, or locally - and in general non-holonomically - for 
each position of the moving point M. 
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The stability of the state of equilibrium of a rigid body with a cavity 
partly or completely filled with a viscous incompressible liquid 
possessing surface tension is cosidered in a linear form. Lyapunov's 
direct method is used to show that the system is unstable if the second 
variation of the potential energy can take negative values. A priori 
lower and upper bounds for the solutions, when the perturbations are 
increased, are obtained. The lower bound guarantees exponential growth 
of the deviations of the solid and liquid particles from the equilibrium 
state. The upper bound shows that the solutions cannot increase at more 
than an exponential rate. In both cases the exponents are calculated 
from the parameters of the equilibrium state and the initial data for the 
perturbation fields. 
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1. General description of the system. We are interested in the motion of a rigid body 
with a cavity containing a liquid. We introduce a fixed (inertial) system of Cartesian co- 
ordinates O'x,'x,'x,' and a moving system Ox,s& rigidly attached to the rigid body, with 
its origin at a certain point 0 of the body. In @Y, coordinates the body and the cavity 
occupy fixed regions z, and '6. The boundary 6% is the outer boundary of the cavity (a) 
and at the same time the inner boundary of the body (rr). The density of the body is given by 
a function P = P (x1. za, x83). The region z is completely filled with two liquids. At any 
instant of time a liquid surface I? divides z into two parts r+ and z-, containing liquids 
with coefficients of viscosity fl+ and r)- and densities p+ and p-. In t* the quantities 

Pi> 'I' are constant, but across r there occur jumps of density Ipl =pe - p- and viscosity 
[?)I EE q+ - q-. 

The curve y in which the surfaces 8% and r intersect divides dz into parts aZ+ 
and aZ-. On the surfaces ]r, 86, dz- the respective liquids have constant surface tensions 
0, u+, 6. The symbols v and n denote unit normals to the surfaces r and &, Y being 
directed from the liquid p’ to p-, and n from z to TV. 

It is assumed that the rigid body is either constrained by certain stationary geometrical 
constraints or is free. The number of degrees of freedom is denoted by n.(~ <6). The 
position of the system is given by the generalized coordinates of the body qa(a = S,..,,n) 
and the relative coordinates of the liquid particles G(L = 1,2,3f. 

As indices we shall use letters of the Greek and Latin alphabets. The former take values 
from 1 to n and correspond to finitely indexed degrees of freedom. The latter vary from 1 to 
3 and denote components of vectors and tensors. Throughout we shall employ the summation 
convention with respect to repeated indices (both Latin and Greek). The following abbreviated 
notation is adopted for functions: 

The position of a material particle of the body or the liquid relative to the fixed 
system of coordinates O'X,'X~'X~' and moving system of coordinates Q&%&2 is given by the 
vectors r’ 

where rO' 
(1.1) with 

__. 
and r, respectively. With this notation we have 

r’ = r + ro’ = r'(qa,5,) (f-9 
is the radius-vector of the point 0 in the system 0x1'x2‘xQ'. Differentiating 
respect to time, we obtain 

v=v,+oxr+u (1.2) 

where vg is the velocity vector of the point 0 of the body, (I) is the instantaneous angular 
velocity vector, and v and u are the velocities of the material point relative to the co- 
ordinate systems O'x~'xz'q' and OX,X,X,. For points of the rigid body,u= 0. We have 

r = z&, u = uijrr V = Uiji (1.3) 

where ji are unit vectors along the axes 0~. 
When the body and the liquid are in motion, small increments to r', a and ga are 

related by the equation 

and the corresponding relation for the velocities is 

Ar' = 
(1.4) 

(1.5) 

Forces exterior to the "body + liquid" 
liquid. 

system are applied both to the body and to the 
The forces acting on the body are characterized by their potential energy&= KK,(qa) 

and dissipation function &,(&,qg'), where the dissipation may be either complete or partial. 
Acting on the liquid is an external field of body forces with potential a($). Substituting 
(1.1) into the potential of external forces applied to the liquid, we obtain 

@(r'(&X, Zl)) = i-I* (Qa, zi) 0.3) 

The potential energy of the system is given by 
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where jr 1, (dz* 1 are the areas of the appropriate surfaces; the potential energy of the 
surface tension forces II,* is independent of ga. 

The kinetic energy of the system is expressed as 

where T1 and pT" are the kinetic energy of the body and the density of the kinetic energy 
of the liquid; the index n attached to I'I, and T,, corresponds to energy values in the non- 
linear problem; by integration over the region Q we mean the sum of integrals over the 
regions Z,, a+, z-; the coefficient p in (1.7), (1.8) for each of these integrals takes the 
value of the appropriate density: p = pl(zi) in ~~,p = p* in rf. 

2. The equations of motion of the system. When there are no dissipative effects, the 
equations of motion of the system are those derived in /l, 2/. Allowance for the viscosity 
of the liquid and the dissipative nature of the external forces applied to the body leads to 
the equations 

d aT aT an dH _n-n__n_n 
dt aqa’ %. %z aPa’ 

dv, ab a% PT + eZklWkL’l = - 7 + 7, 
au, 

I k 
-;i;l=oBT* 

1 

in which v, 0 and II, are as in (1.2), (1.6), p is the pressure and eikl is the absolutely 
antisymmetric unit tensor. The rank 3 (pseudo-) tensor elk1 is the totality of quantities 
with the following properties: interchanging any two indices changes the sign of eikl;ells == 1. 

The boundary conditions for the liquid are as follows: 

dF/& = 0, [u,~IY~ = 2oIZyi, [uil = 0 on r 

2% E I?,-’ + R,’ 
u = 0 on az; aFlat = 0 on y 

where F (51, x2, 33, t) = 0 is the equation of the surface r; H,R,, Rz are the mean curvature 
of I' and its principal radii of curvature at the point in question. The quantities Hi and 
& are assumed to be positive if the centre of curvature lies on the same side of the surface 
as the liquid p+, negative otherwise. The curve y is the intersection of the surfaces L% 
and r. 

The boundary conditions on the solid surface & for a viscous capillary liquid have 
not yet been established uniquely, and the matter is still controversial /3-S/*. (*See also 
Voinov O.V., Hydrodynamical Theory of Wetting. Preprint 179, Novosibirsk, Inst. Teplofiziki 
Sib. Otd. Akad. Nauk SSSR, 1988.) Formula (2.4) corresponds to the simplest version of the 
boundary conditions used in the literature /7/. More complicated formulations will be dis- 
cussed in Sect.11. 

The solutions of problem (2.1)-(2.41 satisfy the energy equality: 

E; = -D, - qa’aR,lBq~a’; E, = T, -t II,,, (2.5) 
20% = S npi,DikdT 

z 

The quantities T,, and I&, are defined in (1.7) and (1.8). 
We shall assume that all quantities in (2-l)-(2.5) and below have been reduced to non- 

dimensional form by suitable scaling. 

3. Equilibrium states and the second vuriatiun of the potential energy. The stationary 
points of the functional n,, (1.7) correspond to the equilibrium (rest) states of the system: 

qa=O, qp‘=o 
U = 0, p = p. (XX); Vp, = --pGQ, in@ 

I&l= -ZoH, Ipl f 0 onp 

(3.1) 
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where r,, is the equilibrium surface of the density jump, which divides the region 'E into 

=~~~~ Qf. oarts Eqs.(3.1) determine the exact solutions of problem (2.1)-(2.4). 
The first and second variation of the potential energy & (1.7) depend only on the geo- 

metric parameters of the system. The first variation 6&,, evaluated in the rest state (3.11, 

is zero. Calculations of the second variation lead to the expression f2f 

8N SE &rev, aII,/& = (vV)II, 

Q z Rj-a + Ra-8, y = (kcos 8 - E)lein 6 

in which 6r and 6qa are the virtual increments of the radius-vector of relative coordinates 
of the liquidparticles and the generalized coordinate g,; the zero index corresponds through- 
out to the values of the functions at equilibrium, 7a is the intersection of the surfacesr, 
and &, 8 is the contact angle, k and % are the curvatures of the normal sections of the 
surfaces l', and & along the directions e and e,, the vectors e and e, in turn are normal 
to the curve y and lie in planes tangent to the surfaces I'0 (directed out of I',) and dz 
(directed out of a~,+), respectively, and V (6N,6N) is the first Beltrami differential par- 
ameter /g/. 

4. ~or~~~tation of the Zinearized problem. We present a brief derivation of the linear- 
ized version of problem (2.1)-(2.5) in the equilibrium state (3.1). 

Linear perturbations of the velocity fields v(5,. % u (52, t) satisfy the following 
equation, which follows from (1.31 and (1.5): 

u, = mi.+ aia(lcG'; a,, = (ar'&&i,, (4.0 

The functions v(xi,t) and u 6% t) are defined for xi E %I and QE r$, with 
us0 for xifzz,. The expression for the first (quadratic) term in the expansion of the 
kinetic energy is obtained by substituting (4.1) into the definition (1.8): 

(4.2) 

To derive the first term in the expansion of the potential energy (1.71, we must consider 
the field of displacements, i.e., the linear increments to the coordinates of a materiaL point, 
reckoned from its equilibrium position. Retaining the notation (1.41, we write 

Ar' = r'-X'x'g, Axi=z,-X~3t;,, Aq, = qa 

where X',Xt are the radius-vectors and coordinates of the material points at equilibrium. 
AS a corollary of (1.4) we have 

Ei = gi -i- a=qa, Ei = Go (4.3) 

in which we have made use of (4.1) and (1.3). The fields of displacements Ei (zkr t) and 
5i txk, t) are also defined for xi ET, and z~E~,,*, with 5, = 0 for zi E 7,. The fields 
(4.1) and (4.3) are related by the equations 

&, z 6% (2,~ t)/at = ui (rrr t)? 6if = ui (Xkr t) (4.4) 

whose simple form is a consequence of the fact that the problem is linearized with the system 
at equilibrium (3.11 (/lo/, Sect.13). 

The first term in the expansion of the potential energy I&, near the rest state (3.1) 
is known to be the second variation 6%" (3.2), in which we must substitute 69, +qa, as, -+ 
C,, 6N +N: 

(4.5) 
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and in oux model (2.4), (1.5) the integral over y. in (4.5) vanishes. 
Eqs.(2.1) and (2.2), linearized by (4.11, become 

(4.8) 

(4.7) 

(4.8 

where p = p(xk,t) is the field of pressure perturbations, R the dissipative function in the 
linear approximation, which is the first term in the expansion of the complete dissipation 
function RI kc%, se') (2.11, cap are constants. Eq.(4.6) is obtained by substituting (4.2), 
(4.5) and (4.8) into (2.1). 

Linearization of conditions (2.3) gives 

[%I vg -t- 0 (UPi - fm vi = w{ ik (*). + Qa ($)} ; If] = 0 on r, 

where A is the second Beltrami differential parameter /9, p.190/, and the part of (4.9) that 
contains it is derived by using the formulae for the variation of curvature /9, p.2761. 

On & the no-slip conditions hold: 

S = Oon dr (4.10) 

The initial data for f4.6)-(4.10) are written as 

c (xk, 0) = r;” bk)r 6t (xks 0) = uo txk) 

qa (0) = q,", 9a' (0) = C7a.O 
(4.11) 

where the functions 5"s u" must obey obvious kinematic constraints, and qao and flaSO are 
arbitrary constants. Based on (4.111, (4.1) and (4.3) one evaluates the initial data 

% bk, 0) = s” @k), v (zk, 0) = v” bk) (4.12) 

In solutions of problem (4.6)-(4.12) one has the energy equality: 

E'=-22R-DD; E=T+n, 20 sip 5 QD,,&d% (4.13) 
t 

where T,n and R are defined in (4.2), (4.5) and (4.8). 
The aim of the subsequent account is to establish certain facts about the growth of 

perturbations of the (unstable) equilibrium state (3.1) I on the assumption that the potential 
energy functional rI (4.5) has no minimum there. It will be assumed that the equilibrium 
states in question are such that there exists a set Q of displacements {Q(xE),qa} for which 
(4.5) gives 

and if (6 (%), qa) e Q inequality (4.14) may be replaced by the reverse inequality, i.e., 
state (3.1) is an infinite-dimensional analogue of a "saddle" point for the functional II. 

5. BasiC functionals and the genem%izeci virial. To apply Lyapunov's direct method, we 
define the following functionals M, W, G and X and the function cp : 

(5-l) 

where the relation ilf'= 2w follows from (4.41, G and a? are by definition non-negative, 

and CM are defined in (4.81. According to /fl/, the functional kr we can written as 



Differentiation of X with respect to time and subsequent reduction Wing (S.I.), t5.2), 

(4.2) and (4.5)-(4.10) yield 

x'=4(T-- II)= ST- 4E (5.3) 

When there are no dissipative effects, equalities of this type are known as virial 

equations IlO/. We may therefore call. (5.3) a generalized virial equation. 

6. A Z&ear bound fop the grobltk of pertz~bations- Under conditions (4.14), the 

simplest bound for the growth of the solution, which indicates instability, is obtained by 
integrating (5.3) with E(O)< 0. The decrease in E(t) with time (4.13) implies E (G C 

E (0) < 0. It then follows from (5.3) that 

X(t) > x (0) + 4 IE (01 I t 

Hence, after using the inequality X<XX1=M + 2T -j-&l, we obtain the required bound: 

XI @) > X (0) + 4 IE (0) I f 16-Q 
in which we can always choose X(O)= M’(O) +-&I (O)>O. 

Since the functional X, is positive, inequality (6.1) guarantees that the perturbations 
will increase linearly in the mean square. At the same time either the velocities u,, qa’, 
the displacements Err qar the liquid strain tensor Gzkr or various sums of these magnitudes 
will increase. The definition of instability will then involve not only increasing deviations 
of the liquid particles from their equilibrium positions, but also increasing derivatives of 
these deviations throughout the volume of the liquid. Below we shall present a bound for 
the growth of the perturbations which will involve only displacements and velocities. 

7. l+.mdmmtaz imquaxity. Multiply Eq.(5.3) by an undetermined constant multiplier 
h and add the result to the energy relation (4.13). After some simple algebra we obtain 

+ Pi,+ R) =-22?I(T~--_&)-o~--& (7.1) 

2Th~2T-l~~haM=~p(~t-~li-5)~dz,2flz~22nf2Ah+h~M 
a. 

Dl~D-~G'+FG=+ ~~(~,~-~G~~~d~ 

Rxrz2R -hw'+ h2g, = ~~~~~~.-~~~)(~~‘- hqe) 

We will now require that h>O. Then, since I?&, RF, and TX are non-negative, Eqs.(?.lf 
yield the inequality 

&,<2%; ELETxj-Kl, (7.2) 

integration of which gives 

El (t) < & (0) Sxp (2hf) (7.3) 

we enphaSiZe that inequality (7.3) holds for any Solutions of problem (4.6)~(4.12) and 
for any positive values of the parameter h. Moreover, we have not yet imposed any restrictions 
on the Sign of the potential energy functional II. 

Since the quantity I&. varies monotonically, it can be used as a Lyapunov functional. 

8. The, Zo~rbamd for the gmmtk of~~~~t~s. 
(4.14) hofas. 

Let us assume now that inequality 
We choose the initial data (4.11), (4.3.21 from the set Q (4.141 so that n(O}( 

0. We assert that in that case one can always choose &(O)(O, after which it will follow 
from (7.31 that the perturbations increase at an exponential rate. 

By (7.11, we have 

& (0) = E (0) + XI? (0) + h8ikf (O), 2B 9 2/l --M (8.0 

Choose the initial data for the velocities so that T(O)< III(O) 1, i.e., E(O)(O, 
Then .!& (0) (8.1) is a second-degree polynomial in b in which the coefficient M(O) of &a 
is positive and the free term E(0) is negative. Therefore the conditions h>O, E&(0)(0 
are equivalent to the following admissible range of h values: 

O<h< A,= --'&BiM -I- ~('IaBIIM)P- B&l 

Obviously, &>O for any initial data with E(O) (0. Under these conditions the 
value of A1 is a lower bound for the increment. Indeed, if X = A, --6 (where 6 is any 
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number in the interval 0 < 6 < A,), inequality (7.3) is written as 

Ea,-a (t) < En,-0 (0) exp I2 (A, - 6) tl (8.3) 

where EA,_~ (0) < 0. It follows from the fact that Tk is non-negative and the definition of 
& (7.1) that 

EL (t) = TX (t) + & (t) > n(t) 

and this relation, together with (8.3), yields 

n (t) < EA,-~ (0) exp [2 (-I1 - 6) tl (8.4) 

This inequality implies that the potential energy n decreases without limit in its 
region of negative values. The drawback of (8.4), however, is that the definition of XI 
(4.5) involves not only deviations of qa,N, but also the derivatives of the deviation V(N, 

N). At the same time, it is evident that dropping the term with V(N,N) from JX only 
strengthens inequality (8.4). Taking the moduli of the negative quantities and reversing the 
sign of the inequality, we infer from (8.4) that 

Zz+q,+-~NadS), C=cbnst>O 

1’0 

From (8.5) we conclude that the rest state (3.1) of the "body + liquid" system, when the 
potential energy (4.14) has no minimum, is unstable in the linear approximation in the mean 
square with respect to the deviations Q=,N. Under these conditions the increasing pertur- 
bations are bounded below by an exponential function with increment A, - s (8.2), depending 
only on the initial data. 

We now consider the solutions of (4.6)-(4.12) for which the initial field of velocities 
v and displacements 5 at each point satisfy the equations 

v (sr. 0) = gt (r)i, 0) = A5 (%O) 

It follows from (7.1), (8.6) that T,(O)-0, EL(O)= II,(O). The 
are then equivalent to restricting A to the interval 

O<h<A 

where the fact that A is positive is guaranteed by the choice of 
with any number 6 in the interval P<h<A, we write (7.3) as 

E,,_b (t) d UA_~ (0) '=P [a (A - 6) tl 

whence we obtain the following bound, instead of (8.5): 

I (t) > I II @) I > I n&6 (0) laxp (2 (A - 6) tl 

It will be shown later that the lower bound for the growth of 

(8.6) 

conditions h>O, EL(O)<0 

(8.7) 

n (0) < 0. Taking L= A-6 

(8.6) 

the perturbations with 
increment (8.7), (8.8) is in a certain sense the maximum admissible such bound. 

9. The upper bound for the grmth of perturbations. The fundamental inequality (7.3) 
also implies an upper bound for increasing perturbations. The idea underlying its derivation 
is to find a value of h such that the functional (7.1) is positive definite for any dis- 
placement fields (6, q,& The functional Eb will then also be positive definite, and, as a 
corollary, (7.3) will yield an upper bound for the perturbations. 

The problem of determining the sign of II, was considered in Sect.8. The conditions 

k>O* II,>0 for U<O are equivalent to the inequality h>A. Define A+ by 
A+ = supeil (9.1) 

Then if h>A+ we have II, >0 for any displacements {c,q,JEQ. Thus, the functionals 

Uh and E, will be positive definite for all possible displacements (L 9,) if h.=A++e 
for any real e>O. 

Using the fact that EA++, is positive definite, we obtain the desired bound from (7.3): 

E a++e W < E,,++, (0) exp (2 (A+ + E) tl 

and this inequality may be reduced, using the inequality U,+>O, to the intuitively clearer 
form 
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2T~++e (t) + WA++ 3 M (0 + E (G+ cp) <2E,++, (0) =P [8 (A++ e) tl (8.2) 

Obviously, the mean square growth of the perturbations is bounded above by an exponential 
function with increment A++E. 

10. Properties of the functional A. A necessary condition for the existence of a 

finite supremum A+ as in (9.1) is that the function A (8.7) must be bounded above on the 

set Q (4.14). For simplicity, let us confine our attention to the case of a fixed vessel 

(n, = 8) with a free surface (p-=0). The desired bound is derived using the relations 

(10.1) 

which hold for any fields a&)~ P(T,+), where C1, C1 are constants. Inequalities (10.1) 
are derived, e.g., in /12, p-138/ and /13, p.45/. The second inequality is a modification 
of Korn's inequality;an important point is that it will be valid even if 6= 0 on only part 
of the boundary of Q+. As to A (see (8.7)), we obtain, using (10.1) and (4.5), 

(10.2) 

The bounds (10.2) for A and A+ together with inequality (9.2), imply that the rate of 
growth of any perturbations of the class under consideration is bounded, and so the solution 
depends continuously on the initial data. For comparison, it should be mentioned that an 
ideal liquid with no surface tension does not have this property; there exist shortwave 
perturbations that increase as rapdily as desired (Rayleigh-Taylor instability /14/). The 
bound (10.2) is due to S.Ya. Belov. 

Another interesting property of Al, A (8.2), (8.7) is particularly evident when the 
generalized coordinates qa(a= i,... . . ..n) include at least one cyclic coordinate qw. BY 
definition, the potential energy II (4.5) of the system does not depend on this coordinate. 
At the same time, A depends on that coordinate through the quantity 24 =G-t q~,cp= c&,&,. 
Therefore, a displacement in the origin of the cyclic coordinate qaj-q,,+ c will generally 
cause A to change. This property of the above bounds follows from the corresponding non- 
invariance of the generalized virial Eq.(5.3). The implication is that for every realization 
of the initial data (4.11) it makes sense to find the largest values of A,, A, corresponding 
to qa. = 0. 

The situation is considerably more complicated if allowance is made for the "analogues" 
of cyclic coordinates in a liquid, which always exist. It is obvious from (4.5) that the 
values of II do not vary under all transformations of the functions 6(zk.t) which leave the 
field of normal displacements N(Zk) on the surface To invariant. For example, in (8.7) II 
does not change, but G changes under a transformation 6-f' : 

~(zk,t)=r)(Ik’t)+b(Zk) 

with any field &(zk) satisfying the relations 

div & = 0 in-T,,*; co = 0 on&, 
N -vO.&, = Oon To 

In actual fact, this transformation reduces to a redefinition of the equilibrium positions 
of the liquid particles. Here again, therefore, for every realization of the initial data 
(4.11) it makes sense to find the largest values of A~,A corresponding to the given initial 
distortion of the boundary N (zk). It is precisely these maximum values that yield the best 
lower bound for the growth of a given perturbation. In accordance with the representation 
for (8.7), the variational problem reduces to finding the minimum of G given N(T~) on r 
and subject to the normalization condition MEW. 

Il. btodels with moving a Zinc of contact of three media. Let us return now to the 
general formulation of the problem as in Sects.2-4. The assumption that the curve y is 
fixed (2.5) is contrary to experimental data /4-E/. However, allowing it to move, while at 
the same time assuming that the liquid satisfies the no slip condition, gives rise to a con- 
tradiction (infinite dissipation D, (2.5) /3/). Considerable efforts have been made to 
overcome this contradiction /5-E/, 
of velocities) are available. 

but as yet no stable models (valid over the entire range 

Below, in order to obtain bounds for the development of instability, we shall use three 
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models with 
be constant 

In the 
velocity of 
O~mfL~flm"< 

a moving curve y, in each of which the dynamic angle of contact FJ is assumed to 
(the Duprk-Young condition): 

c0z.a = (a- - 0+)/o (11.1) 

first model we adopt Navier's slippage condition /5, 6/, according to which the 
the liquid at the surface & is proportional to the shear stress PL _G,,<Rh - 

c = --xu, i( = const > 0; u.n = 0 on Jr (11.2) 

Two other modifications of the boundary conditions are models with a given slippage 
interval /5, 6/, according to which the rigid surface ti is divided into two parts: in a 
strip dtV (fi) (of width 2p with middle curve v,fi = const) either the Navier slippage condition 

holds or the shearing stresses vanish: in the other part a-r, Gaz\ar,(p) there is no slip: 

U= 0 on* u-n= O,p= -xxu on&, (11.3) 
u = 0 on Jy u.n = 0, p = 0 OnaT,, (11.4) 

where X= X* in (11.2), (11.3) for the liquids with densities p*. Conditions-(11.4), a 
special case of (11.3) with x-0, is essentially the same as the developed in /15/. 

Thus, Eqs.(2.1)-(2.3), (ll.l), plus one of conditions (11.2)-(11.4), furnish three more 
possible formulations of the exact problem. Relative to solutions of any of these problems 
the energy equality (2.6) is replaced by the relation 

E = - Dn - D,,’ - qa’dH,lJqa’, ” Dn’ e 1 xu,uidS 

% 

in which D,’ is the dissipation of energy due to surface friction. In model (11.2) 
in models (11.4) or (2.4), (2.5) D,‘=O. 

c?$=L+z; 

The linearized versions of these three models include Eqs.(4.6)-(4.91, to which one must 
add the linearized Duprk-Young condition (11.1) /4/: 

ON/de+ XN = 0 onTo (11.5) 

where yO, x, e are defined in (3.2). 
Conditions (11.2)-(11.4) retain the same form when the problem is linearized, and together 

with (4.6)-(4.9), (11.5) give three new formulations. For the solutions of any of these 
problems (4.13) is replaced by 

E.=-D-D’-ZR, D’ = 1 xuiuidS (11.6) 

%I 

The notation is the same as in (4.13), except that in II (4.5) the last term (the integral 

over uo) does not vanish. 
The generalized virial Eq.(6.3) maintains the same form in these models, except a new 

term appearsin the functional X: 

X=M’+G+cp+V, VS S x5,5@S (11.7) 

%I 

As a consequence of (11.6) and (11.7), new terms also appear in (7.1) and the definition 
of n,: 

didt (T*+ IQ) = -2h(T, -IQ)- DA-RI -D h’ 

D&“D’-W+hW= S x Kt -@I) dS 
%l 

211~~2Il+21A+h~M,ZA~G+cp+V 

(11.8) 

At the same time, since Dg’ is non-negative, the fundamental inequalities (7.2) and (7.3) 
remain unchanged. 

In accordance with (11.8), only the definition of A an estimates (8.2), (8.3),(8.5), (8.8) 
and (9.2) changes, and 1 (8.6) must also include an integral along yO: 

I = C (q&q, + 5 NadS + 1 Wdl) 

r, Ye 

Thus, the results of Sects.8 and 9 remain valid even when the no-slip conditions for the 
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liquid at the rigid boundary C% are relaxed. 

Remarks. 1 o . The fundamental inequalities (8.5), (8.8) and (9.2) have the nature of a 
priori estimates,since the appropriate existence theorems for the solutions have not been 
proved. 

2". The bound (8.8) for the increments when there is no dissipation (an ideal liquid) 
was obtained previously by other methods /ll/. 

3". The condition adopted in Sect.11, according to which the dynamic angle of contact 
is constant, is one ofthemodels used in /3-8/. An analysis of this problem is beyond the 
scope of this paper. Nevertheless, the generality of our account enables us to hope that 
the hydrodynamic analogue of the inversion of Lagrange's theorem should be valid for other 
boundary conditions on &, provided that they admit of linearization and are compatible with 
the non-increasing energy condition. 

40. One of the general qualitative conclusions from the form of the bounds (8.5), (8.8) 
is that the presence of a perturbation with negative potential energy (4.14) will cause 
instability to develop for as large (but finite) values of the dissipative coefficients n*, 
X* * Ca~ as desired. In other words, an increase in the dissipative factors will not stabilize 
the system. 

The authors are indebted to V.V. Pukhnachev and S.Ya. Belov for useful discussions. 
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